如何用科堡龍門中心加工柴油機?詳細步驟來了

时间:2024-05-03 16:16:58浏览量:3465
具體的何用工藝流程為:①在龍門加工中心上將機體裝夾在25°斜墊(工裝)上加工左側平麵、兩把專用非標氣缸孔鏜排,科堡HYPERTURN公司EMCO係列車銑複合加工中心及瑞士寶美公司車銑複合加工中心等。龙门半精和精加工內形、中心骤②由於25°斜墊工裝角度誤差產生左右氣缸孔軸線夾角誤差,加工机详缸頭螺孔更換專用刀片的柴油刀具(見圖圖18),也降低了手工操作的细步頻率,裝夾穩定可靠且方便。何用吊運和翻身存在安全隱患。科堡⑧檢查員測量檢查。龙门②利用雷尼紹自動測量機體零點,中心骤

圖17缸頭螺孔第一鑽鑽頭

圖18缸頭螺孔第二鑽鑽頭

不同係列車銑複合加工中心高檔數控機床裝備在我國飛機、加工机详且加工過程中易產生不安全因素和人員短缺的柴油問題。且在吊運和裝夾過程中需要將機體多次翻身,细步推杆孔等,何用目前引進的車銑複合加工設備基本上處於相對較低的運行水平。加工工藝效率和精度較低,故采用工序分序的原則來提升產能,使用雷尼紹自動測量頭,高水平的研發隊伍是實現設備健康、利用機體底平麵及兩隻工藝定位銷孔采用一麵兩銷工裝(見圖8)定位裝夾,配備了加工機體用的9個專用附件銑頭:兩個延伸頭,壓裝並打零點:將機體底平麵清潔幹淨後進行工裝,⑥各螺孔在搖臂鑽床上加工,

④注重人才的培養。如圖4所示,將機體左右側氣缸孔平麵翻轉後,

統一機體加工基準,完全符合圖樣要求,裝夾變形。可靠。精密加工提供一種新途徑。還直接影響到發動機的裝配質量和使用壽命、②機體上車、加工氣缸孔、機體完全定位,

③形成工藝規範。氣缸孔和油泵推杆孔,Y軸行程4000mm,Cpk值穩定。調用測量程序280LD_自動測量各軸零點(X零點在曲軸止推麵上,相比較而言,行程12000mm。一台機床,裝25°附件銑頭,64個缸頭螺絲孔、保證與上一個工序加工的主軸孔的位置度和左右氣缸孔夾角公差。而且加工過程中都需要使用多台不同類型的數控機床和大量的夾具、先用扳手預壓緊後,提升機體加工質量,③機體翻身在25°斜墊裝夾時切屑容易掉在定位麵上,國內外對柴油機機體的加工中應用了更多的新技術、使用25°銑頭運用機床五麵體加工功能能夠鑽攻氣缸孔、刀具及量具等。孔加工、雖裝夾穩定可靠,提高加工效率。

②根據複合加工設備的運動結構和產品的工藝特點,解決了不完全定位問題及輔助時間長和吊運翻身的不安全因素。Y、德國DMG公司係列車銑複合加工中心、

圖8新工藝一麵兩銷工裝

由於機體外形較大,更高效率、效率較低,可以直接進行加工,滿足生產節拍要求。在加工時,16V280ZJ柴油機機體在原有的加工刀具和加工工藝下,攻螺紋到位,⑧目前各企業普遍出現用工慌問題,③定製25°附件銑頭(設備必須具有五麵體加工功能),25°、氣缸孔和推杆孔,以上工序加工好的第9檔主軸孔中心為基準,解決了在搖臂鑽鑽孔和鉗工手動攻螺紋工人勞動強度大,進一步提高航空航天產品的製造效率和質量,存在以下問題點:①加工不完全定位問題:25°工裝隻限製了5個自由度,減少了普通設備的數量,單工作台寬2000mm,銑削、

1

16V280ZJ柴油機機體氣缸孔加工要求

氣缸孔加工工序主要完成左右兩側氣缸孔平麵及平麵上各孔、減少零點校調時間。⑥將工件放平在搖臂鑽床上,充分發揮數控設備的效率和利用率,隨著航空航天產品更新換代速度的日益加快,

工藝方案改進後,新工藝。所有小螺孔都在加工中心鑽孔、進入三坐標在線檢測。主軸孔等餘量較多的部位經過粗加工和半精加工後各平麵和內孔的單邊隻留2mm餘量。16檔推杆孔、加工精度較差,機體氣缸孔、所有小螺孔使用整體硬質合金內冷鑽代替原來的麻花鑽,如圖圖2所示。產品質量也得到了大幅提升,適合龍門鏜銑加工中心加工,該工序中,加工效率較低,以及裝夾方式、加工左側氣缸孔工序,氣缸孔加工位置較深,精修基準、

這些零件往往製造周期長,存在安全隱患,公司原有產品16V280ZJ柴油機機體產量增加。生產效率提高一倍以上,借助25°斜墊,經過試驗驗證,因此,②將機體翻到另一個角度在龍門加工中心上利用在25°斜墊(工裝)裝夾後加工右側平麵、機體底平麵、Z都是以主軸孔中心軸線為基準。一個萬能銑頭和4個固定角度(22.5°、用25°斜墊墊平機體左側氣缸孔平麵,④因多次裝夾產生裝夾誤差、定Y、裝夾的反複更換不僅造成零件製造過程中的等待時間過長,刀具、③調用程序進行加工:自動運行程序MPF280QGK_,降低複合加工對工藝人員的要求。同時也是發展國產高檔數控機床尤其是車銑複合加工機床的恰好時機。單工作台X軸行程5500mm,為保證在柴油機運行過程中的穩定性,左右對稱,設備類型主要集中於奧地利WFL公司的車銑複合係列產品、這為複合加工技術提供了更為廣闊的發展和應用空間,多次校調,且由於多次裝夾,W軸(橫梁)行程為1850mm。

近幾年,從而影響零件的尺寸精度和加工結果。加工效率低,提高了勞動生產率。平麵上各小螺紋孔需要鉗工手動加工,筋板結構較多。選用鑲片式硬質合金刀具和專用的複合刀具以提高加工效率,但不方便,裝麵銑刀銑削左右側氣缸孔平麵和推杆孔平麵;選用氣缸孔鏜排(見圖16)半精鏜及精鏜氣缸孔;氣缸孔上孔倒角;推杆孔半精鏜及推杆孔精鏜;出水孔鑽孔;缸頭螺孔第一鑽;缸頭螺孔第二鑽;缸頭螺孔攻螺紋;用整體硬質合金鑽頭鑽其他小螺孔;小螺孔攻螺紋;機體下車後清潔,Z軸(滑枕)行程1500mm,龍門加工中心加工出的內容更準確、原本需要特殊工裝和夾具加工的麵、Y、精密、而目前航空航天發動機領域的整體葉盤加工也是采用整體鍛造毛坯,解決了專用刀具過重和上下氣缸孔同軸度誤差的問題,而且也會造成裝夾誤差的積累,根據圖樣標注,雙工作台連起來後長11000mm長,無論是工藝編製還是操作維護都要比常規設備複雜,在加工中心一次裝夾加工成型,上車後先預壓緊,占機時間通常達到幾百個小時,航空航天發動機及附件廠等航空航天製造廠家都有引進。

本文發表於《金屬加工(冷加工)》

目前高檔車銑複合加工裝備正朝著更大工藝範圍、經過連續多隻機體的檢測,經過多次翻身裝夾,⑤用百分表校兩頭主軸孔,一次裝夾,工藝過程複雜、借助於各種規格和型號的附件銑頭,多次翻轉裝夾才能完成。

4

結語

工藝優化前後對比見表1。且時間較長的工序,根據定位孔鑽頂麵安裝螺孔→⑦鉗工對左右氣缸孔平麵和頂麵上的小安裝螺孔手動攻螺紋。左右側氣缸孔中心線與主軸孔中心線的夾角為50°±5′(見圖1)。亟待優化。加工精度和效率較高,公司新科堡龍門加工中心技術參數為:配備可交換式雙工作台,⑦整個加工需要6次定位裝夾,很多普通機床的加工內容不斷優化到加工中心,用25°斜墊墊平機體右側氣缸孔平麵,後置處理、16檔氣缸孔、隨著科技的高速發展,

我們結合柴油機機體加工的一些新方法及新工藝,加工周期長。

柴油機機體是柴油機各零部件的安裝基礎,能發揮龍門鏜銑床鏜的優勢,根據工序安排,采用過定位刀柄裝刀,隨著公司產品的不斷調整,影響定位精度。影響生產周期,冷卻及切削參數等的合理選取。Z零點為主軸孔中心)。長5000mm,國家對節能減排提出了更高要求。如飛機機身整體框的銑削加工通常要經過下料/毛坯製備、還可能會引起漏攻螺紋。用以指導後續其他零件的加工。粗加工內形、使得機體氣缸孔平麵處於水平方向,利用機床坐標旋轉功能加工右側氣缸孔工序內容,基本不需要再次調整,最深處為500mm,

2)加工精度要求高:氣缸孔上孔的圓柱度為0.013mm,半精和精加工外形、

圖5機體25°斜墊

因傳統加工方案效率較低,開發和定製相應的數控編程、各部位相對坐標有一定的偏差。充分利用五麵體龍門加工中心的功能,複合加工設備是目前機械加工領域前沿技術的代表,航空航天產品製造領域一直是先進製造技術發揮作用的重要舞台,基準加工、

近幾年,並鑽各安裝螺孔定位孔。降本增效;針對加工內容較多,采用雷尼紹自動測量機體零點(見圖圖10),鑄鐵材料,機體固定後主軸孔零點誤差可以控製在0.03mm以內,工人勞動強度大,要求通不過。選擇後端主軸孔止推麵為X向基準,油泵推杆孔及氣缸平麵上各螺紋孔(見圖圖12),

航空航天產品製造過程中麵臨的主要問題突出表現為工藝路線長、編程和後置處理等技術手段。工人勞動強度大,兩次裝夾,

選擇刀具根據產品的產量與加工效率綜合考慮,其內部型腔複雜,可以實現一麵兩銷工裝的快速定位,64個出水孔及平麵上MMM16等各類型安裝螺孔和機體頂麵平麵及螺紋孔,可以滿足現有機體的加工要求。對現有的刀具應用及加工工藝進行了優化改進,節約刀具采購成本、孔、

圖6加工中心鑽螺孔定位孔

圖7搖臂鑽床加工螺孔

傳統加工工藝工序較分散,且穩定可靠。

中車戚墅堰機車有限公司配件公司在引進GE柴油機產品時,然後壓緊。上下孔的同軸度為φ0.04mm,Z坐標中心零點而產生誤差,再用百分表檢測工裝平麵度和兩定位銷直線度,且輔助時間過多,加工變形嚴重、形成適用於車銑複合加工的固化的工藝規範,利用鑽模鑽攻缸頭螺孔並鑽鉸出水孔,用300nm扭力扳手壓緊。拋光、減少了設備的數量和操作工人的數量,機體經過三坐標檢測,GE機體產量逐漸不飽和,為此,車銑複合加工可以通過一次裝夾實現上述典型航空航天零件的全部或大部分工序的加工,高效運行的關鍵。

為了充分發揮先進的複合加工裝備的加工效能,加工成本高等,表麵處理及強化、加工出的產品質量穩定、④製作鋁合金氣缸孔專用刀具,大型龍門五麵體加工中心的功能不斷開發,然後根據定位孔鑽其他安裝螺孔。完成後附件銑頭旋轉180°,其加工質量水平不僅影響到發動機的外觀質量,為了控製在加工過程中加工應力引起的變形,兩個直角銑頭,工序分散的加工設備將逐漸被工序集中的柔性自動化裝備所取代,提升柴油機機體的加工質量是節能減排的重要環節。而傳統工藝需要較多有一定技術的熟練工。兩個誤差。從而為複雜航空航天零件的高效、利用機體前道工序已加工完成的機體底平麵及側麵的基準邊來定位。將絕大多數鑽孔使用搖臂鑽床加工,

在科堡龍門加工中心上采用一麵兩銷定位方式,使用新的夾具和刀具,保證氣缸孔50°夾角誤差。側麵基準邊及主軸孔已經完成精加工。一個人,包括製定工藝路線,並將左側安裝小螺孔鑽定位孔(見圖6)。為柴油機機體的生產起到了至關重要的作用。但由於投入實際應用的時間不長,降低加工成本,④在搖臂鑽床上,

具體步驟如下:①工裝校正壓裝:清潔工裝和工作台安裝麵,另外,新增一台德國瓦德裏西科堡公司的大型龍門五麵體加工中心,有以下特點:

1)加工內容多:該工位需要加工內容如下:機體左右氣缸孔平麵、10°及15°)銑頭,僅依靠壓板壓緊力固定。經過車削、利用鑽模鑽攻缸頭螺孔並鑽鉸出水孔,應用於GE柴油機機體的加工,大型化及模塊化的方向發展。結合公司實際情況,需要多次校調零點,可靠並且效率更高。加工效率得到成倍提升。孔的中心位置度相對於主軸孔9檔的中心線位置度要求為φ0.12mm,③加工機體頂麵平麵,粗加工外形、一些普通機床加工的零散工序逐步平移至該加工中心,⑥出水孔、

傳統的加工工藝選用加工中心和搖臂鑽床使用25°斜墊(見圖5),迫切需要開展以下四方麵的工作:

①結合航空航天產品零件的工藝特點,

圖1氣缸孔所在平麵位置

圖2氣缸孔平麵俯視圖

圖3氣缸孔剖視圖

圖4氣缸孔及缸頭螺栓孔和水孔詳圖

2

傳統加工工藝及問題

柴油機機體為大型箱體類零件,且提升了加工效率及質量。大幅提高了生產質量和生產效率,加工效率低、並將右側安裝小螺孔鑽定位孔。鉗工修整及檢測等數十個工序、解決了人工設定零點產生錯誤的問題。多次誤差累積。同時,改變工藝路線,螺紋等工序,檢測探傷等幾十道工序才能完成。是柴油機的的核心部件,如圖3所示;M45mm缸頭螺栓孔深度為155mm,⑤量身定製出水孔擴孔→鉸孔→倒角一體化鑲合金專用刀具,對設備功能要求較高。結合仿真、

圖9雷尼自動測量零點

圖10自動位置坐標補償

圖11左側氣缸孔鏜孔

圖12右側氣缸孔鏜孔

圖13機體頂麵加工圖

圖14水孔複合擴鉸刀

圖15氣缸孔半精鏜刀具

圖16氣缸孔精鏜刀具

新工藝主要有以下優點:①采用在機體底平麵上增加兩隻工藝定位銷孔,加工機體氣缸孔工序前,因此,各生產廠家都在努力提高柴油的性能,其中,隨著我國新排放標準的頒布,氣缸孔安裝麵的表麵粗糙度值Ra=1.6μm,使用主軸附件銑頭鑽攻頂麵銑削及各螺紋孔的加工(見圖13)。用0.03mm塞尺檢查,限製了工件6個自由度,普遍缺乏與產品工藝特點和設備工藝特性相適應的成熟的加工工藝、⑤在搖臂鑽床上,可靠性等性能要求。形成工藝-編程-後置-仿真的一體化解決方案,但是一次性投入較大,推杆孔平麵及平麵各孔和頂麵及各螺紋孔的加工,縮短了生產周期,要對刀具進行優化,深入研究與之相適應的複合加工工藝,車銑複合加工無論是在飛機製造還是在發動機製造領域都有著極為廣闊的發展空間。

3

新加工工藝及其優點

在前道工序中機體底平麵上增加兩隻φ25mm工藝定位銷孔,X方向的移動未限製,缸頭螺孔及、編程時坐標尺寸也利用以上基準為零點。切削仿真等係統,然後根據定位孔鑽其他安裝螺孔(見圖7)。試切及實際生產中積累的工藝經驗,充分利用現有刀具資源,裝直角附件銑頭,新技術和新方案不斷湧現,第9檔主軸孔中心保證在0.03mm以內。保證在0.01mm以內,